Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Sci China Life Sci ; 66(10): 2380-2398, 2023 10.
Article in English | MEDLINE | ID: mdl-37389760

ABSTRACT

Cross-kingdom herbal miRNA was first reported in 2012. Using a modified herbal extraction protocol, we obtained 73,677,287 sequences by RNA-seq from 245 traditional Chinese Medicine (TCM), of which 20,758,257 were unique sequences. We constructed a Bencao (herbal) small RNA (sRNA) Atlas ( http://bencao.bmicc.cn ), annotated the sequences by sequence-based clustering, and created a nomenclature system for Bencao sRNAs. The profiles of 21,757 miRNAs in the Atlas were highly consistent with those of plant miRNAs in miRBase. Using software tools, our results demonstrated that all human genes might be regulated by sRNAs from the Bencao sRNA Atlas, part of the predicted human target genes were experimentally validated, suggesting that Bencao sRNAs might be one of the main bioactive components of herbal medicines. We established roadmaps for oligonucleotide drugs development and optimization of TCM prescriptions. Moreover, the decoctosome, a lipo-nano particle consisting of 0.5%-2.5% of the decoction, demonstrated potent medical effects. We propose a Bencao (herbal) Index, including small-molecule compounds (SM), protein peptides (P), nucleic acid (N), non-nucleic and non-proteinogenic large-molecule compounds (LM) and elements from Mendeleev's periodic table (E), to quantitatively measure the medical effects of botanic medicine. The Bencao sRNA Atlas is a resource for developing gene-targeting oligonucleotide drugs and optimizing botanical medicine, and may provide potential remedies for the theory and practice of one medicine.


Subject(s)
Drugs, Chinese Herbal , MicroRNAs , RNA, Small Untranslated , Humans , Medicine, Chinese Traditional , MicroRNAs/genetics , Drugs, Chinese Herbal/chemistry , RNA, Small Untranslated/genetics , Oligonucleotides
2.
Front Plant Sci ; 14: 1124536, 2023.
Article in English | MEDLINE | ID: mdl-36959935

ABSTRACT

There is a long history of traditional medicine use. However, little genetic information is available for the plants used in traditional medicine, which limits the exploitation of these natural resources. Third-generation sequencing (TGS) techniques have made it possible to gather invaluable genetic information and develop herbal genomics. In this review, we introduce two main TGS techniques, PacBio SMRT technology and Oxford Nanopore technology, and compare the two techniques against Illumina, the predominant next-generation sequencing technique. In addition, we summarize the nuclear and organelle genome assemblies of commonly used medicinal plants, choose several examples from genomics, transcriptomics, and molecular identification studies to dissect the specific processes and summarize the advantages and disadvantages of the two TGS techniques when applied to medicinal organisms. Finally, we describe how we expect that TGS techniques will be widely utilized to assemble telomere-to-telomere (T2T) genomes and in epigenomics research involving medicinal plants.

3.
Phytomedicine ; 105: 154375, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35952576

ABSTRACT

BACKGROUND: Safety concerns, caused by complex and unpredictable adulterants, run through the entire industrial chain of traditional Chinese medicines (TCMs). However, the conventional circulation traceability system only focuses on a certain end or link at the back end of the TCM industrial chain, ignoring the integrity of the links cross the entire industrial chain and lacking traceability. In consequence, a strict and rational supervision system is urgently required for the entire industrial chain. HYPOTHESIS/PURPOSE: We hypothesize that DNA barcoding would be a suitable measure for the traceability of adulterants in the entire TCM industrial chain. METHODS: In this study, Rhei Radix et Rhizoma was selected as a model to establish a traceability system for the entire TCM industrial chain. A total of 110 samples, including leaves, seeds, roots, decoction pieces, and traditional Chinese patent medicines (TCPMs), were collected upstream, midstream, and downstream of the entire industrial chain of Rhei Radix et Rhizoma. The ndhF-rpl32 fragment rather than the universal DNA barcodes, which could not distinguish the three original species of Rhei Radix et Rhizoma, was selected as a specific DNA barcode to evaluate the practical application of DNA barcoding in the chain. RESULTS: The results showed that the ndhF-rpl32 fragment in all samples could be amplified and bi-directionally sequenced. Based on the standard operating procedures of DNA barcoding, the ndhF-rpl32 fragment clearly distinguished the seven Rheum species collected upstream of the entire industrial chain. For the samples collected midstream and downstream of the entire industrial chain, 25% of the 36 commercial decoction pieces samples were identified as adulterants, whereas the eight TCPM samples were all derived from genuine Rhei Radix et Rhizoma. CONCLUSIONS: This study shows that DNA barcoding is a powerful and suitable technology that can be applied to trace TCMs in the entire industrial chain, thereby assuring clinical medication safety.


Subject(s)
Drugs, Chinese Herbal , Rheum , DNA Barcoding, Taxonomic , Medicine, Chinese Traditional , Rhizome
4.
Phytomedicine ; 105: 154376, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35963193

ABSTRACT

BACKGROUND: The high sensitivity of droplet digital PCR (ddPCR) contributes to its excellent performance in animal and microorganism identification, but the utilization of ddPCR is limited in plant adulterant identification of highly processed products for which effective methods are lacking. PURPOSE: This study investigated the feasibility of ddPCR in the identification of plant adulterants in Chinese patent medicine (CPM) as groundwork to develop ddPCR assays for other highly processed goods. METHODS: The original plant, processed and highly processed products of Mutong (Akebiae Caulis) and its two adulterants were used to analyze the specificity, sensitivity, and practical performance of the developed singleplex and triplex ddPCR assays. RESULTS: The results revealed that the limit of detection (LOD) and limit of quantification (LOQ) for the selective ddPCR assays developed to identify Mutong and its adulterants were 0.00002 ng/µl and 0.00016 ng/µl, respectively, and that the regression equations representing the relationships between DNA concentration and target copy number all exhibited good linearity. Furthermore, the common adulterant of Mutong in three samples of Longdan Xiegan pills was successfully identified through ddPCR assays and confirmed by Sanger sequencing. CONCLUSION: This work comprehensively revealed the great ability of ddPCR technology in detecting plant adulterants in traditional Chinese medicine (TCM), providing a method for the quality control of highly processed plant products with complex components for commonly used goods.


Subject(s)
Medicine, Chinese Traditional , Animals , Limit of Detection , Polymerase Chain Reaction , Quality Control
5.
Front Pharmacol ; 13: 828948, 2022.
Article in English | MEDLINE | ID: mdl-35685641

ABSTRACT

Background: There has been global concern about the safety and accuracy of traditional Chinese patent medicines (TCPMs). Panax notoginseng, also known as sanqi, is an important constituent of TCPMs. However, identifying the species contained in TCPMs is challenging due to the presence of multiple ingredients and the use of various preparation processes. Objective: To detect P. notoginseng in TCPMs. Methods: A TaqMan probe-based qPCR assay was constructed and validated with DNA extracted from P. notoginseng and adulterants. In total, 75 samples derived from 25 batches of TCPMs were tested using the constructed qPCR method. Results: A TaqMan probe-based qPCR assay targeting P. notoginseng was established. The constructed qPCR assay could specifically discriminate P. notoginseng from Panax ginseng, Panax quinquefolium and Curcuma aromatica Salisb. cv. Wenyujin. The sensitivity study showed that the detectable DNA template concentration of P. notoginseng for this qPCR assay was 0.001 ng/µl. All 75 samples from TCPMs were confirmed to contain P. notoginseng by the qPCR assay. Conclusions: The qPCR method can accurately identify P. notoginseng in TCPMs and is promising as a powerful tool for quality control and market regulation.

6.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1060-1066, 2021 Mar.
Article in Chinese | MEDLINE | ID: mdl-33787097

ABSTRACT

Rhei Radix et Rhizoma is a kind of commonly used Chinese medicinal materials. Due to the overharvesting, the wild resource is endangering. Large market demand caused severely adulterant of commercial Rhei Radix et Rhizoma medicinal materials and decoction pieces. This manuscript reviewed the advances of the original species authentication in the industrial chain of Rhei Radix et Rhizoma during the latest decade, including characteristics and microscopic features, phytochemical analysis on anthraquinones, and molecular authentication based on DNA barcoding. Accordingly, an original species authentication route for the industrial chain of Rhei Radix et Rhizoma was summarized:(1)the identification of seeds and seedlings by DNA barcoding;(2) the selection of high variable sites based on the chloroplast genome;(3)biomonitoring of the Rhei Radix et Rhizoma medicinal materials and decoction pieces by two-dimensional DNA barcode;(4)traceability of Chinese patent medicines by third-generation sequencing. In conclusion, the combination of molecular identification and traditional identification methods provides a new idea for the identification of the original species of Rhei Radix et Rhizoma in the industrial chain and a essential guidance for the research of drug safety and efficacy of Rhei Radix et Rhizoma.


Subject(s)
Drugs, Chinese Herbal , Rheum , Animals , Anthraquinones , Plant Roots , Rhizome
7.
Ecol Evol ; 9(4): 1934-1945, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847083

ABSTRACT

The genus Corydalis is recognized as one of the most taxonomically challenging plant taxa. It is mainly distributed in the Himalaya-Hengduan Mountains, a global biodiversity hotspot. To date, no effective solution for species discrimination and taxonomic assignment in Corydalis has been developed. In this study, five nuclear and chloroplast DNA regions, ITS, ITS2, matK, rbcL, and psbA-trnH, were preliminarily assessed based on their ability to discriminate Corydalis to eliminate inefficient regions, and the three regions showing good performance (ITS, ITS2 and matK) were then evaluated in 131 samples representing 28 species of 11 sections of four subgenera in Corydalis using three analytical methods (NJ, ML, MP tree; K2P-distance and BLAST). The results showed that the various approaches exhibit different species identification power and that BLAST shows the best performance among the tested approaches. A comparison of different barcodes indicated that among the single barcodes, ITS (65.2%) exhibited the highest identification success rate and that the combination of ITS + matK (69.6%) provided the highest species resolution among all single barcodes and their combinations. Three Pharmacopoeia-recorded medicinal plants and their materia medica were identified successfully based on the ITS and ITS2 regions. In the phylogenetic analysis, the sections Thalictrifoliae, Sophorocapnos, Racemosae, Aulacostigma, and Corydalis formed well-supported separate lineages. We thus hypothesize that the five sections should be classified as an independent subgenus and that the genus should be divided into three subgenera. In this study, DNA barcoding provided relatively high species discrimination power, indicating that it can be used for species discrimination in this taxonomically complicated genus and as a potential tool for the authentication of materia medica belonging to Corydalis.

8.
Sci China Life Sci ; 62(3): 288-308, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30128965

ABSTRACT

From Shen Nong's Herbal Classic (Shennong Bencao Jing) to the Compendium of Materia Medica (Bencao Gangmu) and the first scientific Nobel Prize for the mainland of China, each milestone in the historical process of the development of traditional Chinese medicine (TCM) involves screening, testing and integrating. After thousands of years of inheritance and development, herbgenomics (bencaogenomics) has bridged the gap between TCM and international advanced omics studies, promoting the application of frontier technologies in TCM. It is a discipline that uncovers the genetic information and regulatory networks of herbs to clarify their molecular mechanism in the prevention and treatment of human diseases. The main theoretical system includes genomics, functional genomics, proteomics, transcriptomics, metabolomics, epigenomics, metagenomics, synthetic biology, pharmacogenomics of TCM, and bioinformatics, among other fields. Herbgenomics is mainly applicable to the study of medicinal model plants, genomic-assisted breeding, herbal synthetic biology, protection and utilization of gene resources, TCM quality evaluation and control, and TCM drug development. Such studies will accelerate the application of cutting-edge technologies, revitalize herbal research, and strongly promote the development and modernization of TCM.


Subject(s)
Genomics/methods , Medicine, Chinese Traditional/methods , Metabolomics/methods , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Proteomics/methods , China , Drugs, Chinese Herbal/therapeutic use , Humans , Materia Medica/therapeutic use , Medicine, Chinese Traditional/trends , Phytotherapy/methods , Phytotherapy/trends , Plants, Medicinal/classification , Synthetic Biology/methods , Synthetic Biology/trends
9.
Phytomedicine ; 47: 40-47, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30166107

ABSTRACT

BACKGROUND: Current quality control methods for traditional Chinese patent medicines (TCPMs), e.g., microscopy, thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC), cannot detect herbal species composition with adequate precision. To address this issue, more effective detection methods should be explored. HYPOTHESIS/PURPOSE: We hypothesized that shotgun metagenomic sequencing can fulfill the requirements for the species detection of multi-ingredient TCPMs. METHODS: Longdan Xiegan Wan (LDXGW), once thought to be the chief culprit in aristolochic acid nephropathy (AAN), was selected to establish the method. It was used for both reference and commercial LDXGW samples. The precision authentication of herbal species contained in multi-ingredient TCPM is based on the shotgun metagenomic sequencing of genomic DNA without PCR amplification. Chemical analyses were also conducted as a contrast test. RESULTS: Over 100 G of raw data was obtained, and this value represented more than 0.75 billion reads. After assembling and filtering all the reads, a total of 261 contigs were obtained, which belonged to the ITS2, psbA-trnH, and matK regions of the reference and commercial samples. Because the homology of the rbcL region was high, it was not analyzed in the HTS data. Bioinformatics analysis indicated that the ITS2 region, as a DNA barcode, showed the highest identification efficiency. It could successfully detect all prescribed species, including four processed herbal ingredients, in the lab-made reference samples. The commercial samples all met the requirements of the Chinese Pharmacopoeia according to the TLC and HPLC tests. However, the shotgun metagenomic sequencing detected the substitution of Akebiae Caulis (Mutong) in the commercial samples, while the chemical analyses could not distinguish. CONCLUSION: The results highlight that shotgun metagenomic sequencing is a complementary method for the precise species detection of TCPMs.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Plant/genetics , Drugs, Chinese Herbal/analysis , Plants, Medicinal/classification , Medicine, Chinese Traditional , Quality Control
10.
Acta Pharm Sin B ; 8(3): 488-497, 2018 May.
Article in English | MEDLINE | ID: mdl-29881688

ABSTRACT

Global concerns have been paid to the potential hazard of traditional herbal medicinal products (THMPs). Substandard and counterfeit THMPs, including traditional Chinese patent medicine, health foods, dietary supplements, etc. are potential threats to public health. Recent marketplace studies using DNA barcoding have determined that the current quality control methods are not sufficient for ensuring the presence of authentic herbal ingredients and detection of contaminants/adulterants. An efficient biomonitoring method for THMPs is of great needed. Herein, metabarcoding and single-molecule, real-time (SMRT) sequencing were used to detect the multiple ingredients in Jiuwei Qianghuo Wan (JWQHW), a classical herbal prescription widely used in China for the last 800 years. Reference experimental mixtures and commercial JWQHW products from the marketplace were used to confirm the method. Successful SMRT sequencing results recovered 5416 and 4342 circular-consensus sequencing (CCS) reads belonging to the ITS2 and psbA-trnH regions. The results suggest that with the combination of metabarcoding and SMRT sequencing, it is repeatable, reliable, and sensitive enough to detect species in the THMPs, and the error in SMRT sequencing did not affect the ability to identify multiple prescribed species and several adulterants/contaminants. It has the potential for becoming a valuable tool for the biomonitoring of multi-ingredient THMPs.

11.
Front Plant Sci ; 8: 926, 2017.
Article in English | MEDLINE | ID: mdl-28620408

ABSTRACT

Substandard traditional patent medicines may lead to global safety-related issues. Protecting consumers from the health risks associated with the integrity and authenticity of herbal preparations is of great concern. Of particular concern is quality control for traditional patent medicines. Here, we establish an effective approach for verifying the biological composition of traditional patent medicines based on single-molecule real-time (SMRT) sequencing and DNA barcoding. Yimu Wan (YMW), a classical herbal prescription recorded in the Chinese Pharmacopoeia, was chosen to test the method. Two reference YMW samples were used to establish a standard method for analysis, which was then applied to three different batches of commercial YMW samples. A total of 3703 and 4810 circular-consensus sequencing (CCS) reads from two reference and three commercial YMW samples were mapped to the ITS2 and psbA-trnH regions, respectively. Moreover, comparison of intraspecific genetic distances based on SMRT sequencing data with reference data from Sanger sequencing revealed an ITS2 and psbA-trnH intergenic spacer that exhibited high intraspecific divergence, with the sites of variation showing significant differences within species. Using the CCS strategy for SMRT sequencing analysis was adequate to guarantee the accuracy of identification. This study demonstrates the application of SMRT sequencing to detect the biological ingredients of herbal preparations. SMRT sequencing provides an affordable way to monitor the legality and safety of traditional patent medicines.

12.
Sci Rep ; 7: 40000, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059130

ABSTRACT

Pulsatillae radix is a conventional traditional Chinese medicine (TCM) with common name Baitouweng, and has notable effects on inflammation and dysentery. Pulsatilla chinensis (Bge.) Regel is the only source plant of Baitouweng recorded in Chinese Pharmacopoeia, but its adulteration often occurs in the market that possibly affects medicinal efficacy and safety. We have established an internal transcribed spacer 2 (ITS2) barcode library based on 105 plant samples from 12 Pulsatilla species and 10 common adulterants. Results indicate that ITS2 barcoding can accurately distinguish Pulsatilla species from their adulterants. Pulsatilla chinensis can be discriminated from 11 congeneric species by two stable single nucleotide polymorphisms (SNPs) in the ITS2 region. Additionally, a quick specific PCR-RFLP identification assay based on the ITS2 barcode was developed. Using specific primers ITS2/PR1 combined with restriction enzyme Bgl I, Pu. chinensis can rapidly be differentiated from other species via simple and low-cost test procedures. Furthermore, 30 commercial Baitouweng products were tested and only two products were derived from authentic Pu. chinensis. Thus, these two molecular approaches provide practical tools for quick identification of commercial Baitouweng products and can help ensure the safe use of this TCM product.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Ribosomal Spacer/genetics , Pulsatilla/classification , DNA Primers/genetics , DNA, Plant/genetics , Drug Contamination , Medicine, Chinese Traditional , Phylogeny , Polymorphism, Restriction Fragment Length , Pulsatilla/genetics
13.
Sci Rep ; 5: 8337, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25661009

ABSTRACT

The adulteration of herbal products is a threat to consumer safety. Here we surveyed the species composition of commercial Rhodiola products using DNA barcoding as a supervisory method. A Rhodiola dietary supplement DNA barcode database was successfully constructed using 82 voucher samples from 10 Rhodiola species. Based on the DNA barcoding standard operating procedure (SOP), we used this database to identify 100 Rhodiolae Crenulatae Radix et Rhizoma decoction piece samples that were purchased from drug stores and hospitals. The results showed that only 36 decoction piece sequences (40%) were authentic R. crenulata, which is recorded in Chinese Pharmacopeia, whereas the other samples were all adulterants and may indicate a potential safety issue. Among the adulterants, 35 sequences (38.9%) were authenticated as R. serrata, nine sequences (10%) were authenticated as R. rosea, which is documented in the United States Pharmacopeia, and the remaining samples were authenticated as other three Rhodiola species. This result indicates decoction pieces that are available in the market have complex origins and DNA barcoding is a convenient tool for market supervision.


Subject(s)
DNA Barcoding, Taxonomic , DNA, Plant/genetics , Drugs, Chinese Herbal/analysis , Rhodiola/genetics , DNA, Plant/analysis
14.
Yao Xue Xue Bao ; 50(10): 1356-61, 2015 Oct.
Article in Chinese | MEDLINE | ID: mdl-26837186

ABSTRACT

In order to authenticate the components of antler powder in the market, DNA barcoding technology coupled with cloning method were used. Cytochrome c oxidase subunit I (COI) sequences were obtained according to the DNA barcoding standard operation procedure (SOP). For antler powder with possible mixed components, the cloning method was used to get each COI sequence. 65 COI sequences were successfully obtained from commercial antler powders via sequencing PCR products. The results indicates that only 38% of these samples were derived from Cervus nippon Temminck or Cervus elaphus Linnaeus which is recorded in the 2010 edition of "Chinese Pharmacopoeia", while 62% of them were derived from other species. Rangifer tarandus Linnaeus was the most frequent species among the adulterants. Further analysis showed that some samples collected from different regions, companies and prices, contained adulterants. Analysis of 36 COI sequences obtained by the cloning method showed that C. elaphus and C. nippon were main components. In addition, some samples were marked clearly as antler powder on the label, however, C. elaphus or R. tarandus were their main components. In summary, DNA barcoding can accurately and efficiently distinguish the exact content in the commercial antler powder, which provides a new technique to ensure clinical safety and improve quality control of Chinese traditional medicine


Subject(s)
Antlers , DNA Barcoding, Taxonomic , Medicine, Chinese Traditional , Animals , Deer , Polymerase Chain Reaction , Powders , Quality Control
15.
Acta Pharmaceutica Sinica ; (12): 1356-61, 2015.
Article in Chinese | WPRIM | ID: wpr-672978

ABSTRACT

In order to authenticate the components of antler powder in the market, DNA barcoding technology coupled with cloning method were used. Cytochrome c oxidase subunit I (COI) sequences were obtained according to the DNA barcoding standard operation procedure (SOP). For antler powder with possible mixed components, the cloning method was used to get each COI sequence. 65 COI sequences were successfully obtained from commercial antler powders via sequencing PCR products. The results indicates that only 38% of these samples were derived from Cervus nippon Temminck or Cervus elaphus Linnaeus which is recorded in the 2010 edition of "Chinese Pharmacopoeia", while 62% of them were derived from other species. Rangifer tarandus Linnaeus was the most frequent species among the adulterants. Further analysis showed that some samples collected from different regions, companies and prices, contained adulterants. Analysis of 36 COI sequences obtained by the cloning method showed that C. elaphus and C. nippon were main components. In addition, some samples were marked clearly as antler powder on the label, however, C. elaphus or R. tarandus were their main components. In summary, DNA barcoding can accurately and efficiently distinguish the exact content in the commercial antler powder, which provides a new technique to ensure clinical safety and improve quality control of Chinese traditional medicine

16.
Zhongguo Zhong Yao Za Zhi ; 39(12): 2204-7, 2014 Jun.
Article in Chinese | MEDLINE | ID: mdl-25244745

ABSTRACT

In order to provide a new method for the identification of Placenta hominis, the COI barcode has been employed to identify the P. hominis medicinal materials and its adulterants. Genomic DNA was extracted from the experimental samples. The COI sequences were amplified and sequenced bi-directionally. Sequence assembly and consensus sequence generation were performed using the CodonCode Aligner. NJ tree was constructed by MEGA6.0 software. COI sequences can be successfully obtained from all experimental samples. The intra-specific variation and inter-specific divergence were calculated. The average intra-specific K2P distance of P. hominis was 0.001 and the maximum intra-specific distance was 0.008. The cluster dendrogram constructed can be seen that the same genus is together, and distinguished from its adulterants. It is concluded that P. hominis and its adulterants can be correctly identified by DNA barcoding method.


Subject(s)
DNA Barcoding, Taxonomic/methods , Electron Transport Complex IV/genetics , Placenta/chemistry , Placenta/enzymology , Animals , Cattle , Drug Contamination/prevention & control , Female , Humans , Medicine, Chinese Traditional , Molecular Sequence Data , Phylogeny , Pregnancy , Quality Control , Sheep , Swine
17.
Article in English | MEDLINE | ID: mdl-25101134

ABSTRACT

Remote sensing has been extensively applied in agriculture for its objectiveness and promptness. However, few applications are available for monitoring natural medicinal plants. In the paper, a multilevel monitoring system, which includes satellite and aerial remote sensing, as well as ground investigation, was initially proposed to monitor natural Rheum tanguticum resource in Baihe Pasture, Zoige County, Sichuan Province. The amount of R. tanguticum from images is M = S*ρ and S is vegetation coverage obtained by satellite imaging, whereas ρ is R. tanguticum density obtained by low-altitude imaging. Only the R. tanguticum which coverages exceeded 1 m(2) could be recognized from the remote sensing image because of the 0.1 m resolution of the remote sensing image (called effective resource at that moment), and the results of ground investigation represented the amounts of R. tanguticum resource in all sizes (called the future resource). The data in paper showed that the present available amount of R. tanguticum accounted for 4% to 5% of the total quantity. The quantity information and the population structure of R. tanguticum in the Baihe Pasture were initially confirmed by this system. It is feasible to monitor the quantitative distribution for natural medicinal plants with scattered distribution.

18.
Zhongguo Zhong Yao Za Zhi ; 39(21): 4186-90, 2014 Nov.
Article in Chinese | MEDLINE | ID: mdl-25775791

ABSTRACT

In order to identify Peucedani Radix, Peucedani Decursivi Radix and their adulterants, the internal transcribed spacer 2 (ITS2) regions of Peucedani Radix, Peucedani Decursivi Radix and their adulterants were amplified and bidirectionally sequenced based on the Principles for Molecular Identification of Traditional Chinese Materia Medica Using DNA Barcoding, which has been promulgated by Chinese Pharmacopoeia Commission. Sequences were analyzed and assembled by Codon Code Aligner V3. 7.1. The relevant data were analyzed by MEGA 5. 0. Species identification analyses were performed by using the nearest distance methods and neighbor-joining (NJ) methods. The result showed that the ITS2 sequence lengths of Peucedani Radix were 229-230 bp and the average intra-specific genetic distances were 0.005. The ITS2 sequence lengths of Peucedani Decursivi Radix were 227 bp and the sequences contained no variation site. The average inter-specific K2P genetic distance of Peucedani Radix, Peucedani Decursivi Radix and their adulterants species were 0.044 and 0.065 respectively. The minimum inter-specific divergence is larger than the maximum intra-specific divergence of Peucedani Decursivi Radix. The nearest distance methods and NJ trees results indicated that Peucedani Radix, Peucedani Decursivi Radix and their adulterants species could be identification clearly. The ITS2 regions can stably and accurately distinguish Peucedani Radix, Peucedani Decursivi Radix and their adulterants.


Subject(s)
Apiaceae/classification , DNA Barcoding, Taxonomic/methods , Drug Contamination , Apiaceae/genetics , DNA, Ribosomal Spacer
19.
Biomed Res Int ; 2013: 549037, 2013.
Article in English | MEDLINE | ID: mdl-23862147

ABSTRACT

DNA barcoding is a novel molecular identification method that aids in identifying traditional Chinese materia medica using traditional identification techniques. However, further study is needed to assess the stability and accuracy of DNA barcoding. Flos Lonicerae Japonicae, a typical medicinal flower, is widely used in China, Korea, and other Southeast Asian countries. However, Flos Lonicerae Japonicae and its closely related species have been misused and traded at varying for a wide range of prices. Therefore, Flos Lonicerae Japonicae must be accurately identified. In this study, the ITS2 and psbA-trnH regions were amplified by polymerase chain reaction (PCR). Sequence assembly was performed using CodonCode Aligner V 3.5.4. The intra- versus inter-specific variations were assessed using six metrics and "barcoding gaps." Species identification was conducted using BLAST1 and neighbor-joining (NJ) trees. Results reveal that ITS2 and psbA-trnH exhibited an average intraspecific divergence of 0.001 and 0, respectively, as well as an average inter-specific divergence of 0.0331 and 0.0161. The identification efficiency of ITS2 and psbA-trnH evaluated using BLAST1 was 100%. Flos Lonicerae Japonicae was formed into one clade through the NJ trees. Therefore, Flos Lonicerae Japonicae can be stably and accurately identified through the ITS2 and psbA-trnH regions, respectively.


Subject(s)
DNA Barcoding, Taxonomic/methods , Flowers/genetics , Lonicera/genetics , Materia Medica/analysis , Base Sequence , China , DNA, Intergenic/genetics , DNA, Plant/genetics , Genetic Variation , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Species Specificity
20.
Zhongguo Zhong Yao Za Zhi ; 38(2): 141-8, 2013 Jan.
Article in Chinese | MEDLINE | ID: mdl-23672031

ABSTRACT

Since the research of molecular identification of Chinese Materia Medica (CMM) using DNA barcode is rapidly developing and popularizing, the principle of this method is approved to be listed in the Supplement of the Pharmacopoeia of the People's Republic of China. Based on the study on comprehensive samples, the DNA barcoding systems have been established to identify CMM, i.e. ITS2 as a core barcode and psbA-trnH as a complementary locus for identification of planta medica, and COI as a core barcode and ITS2 as a complementary locus for identification of animal medica. This article introduced the principle of molecular identification of CMM using DNA barcoding and its drafting instructions. Furthermore, its application perspective was discussed.


Subject(s)
DNA Barcoding, Taxonomic/methods , Drugs, Chinese Herbal/classification , Materia Medica/classification , Animals , China , DNA/genetics , DNA, Ribosomal Spacer/genetics , Drugs, Chinese Herbal/isolation & purification , Electron Transport Complex IV/genetics , Materia Medica/isolation & purification , Medicine, Chinese Traditional , Plant Proteins/genetics , Plants, Medicinal
SELECTION OF CITATIONS
SEARCH DETAIL